
Scalable Group Communication for Highly-Available
Distributed Systems using Leader-Offload

Andrei Palade (0907350)

April 25, 2014

ABSTRACT
Reliable multicast is a powerful communication primitive for
structuring distributed programs in which multiple processes
must closely cooperate together. When the availability of
these processes becomes a critical feature, one general ap-
proach is state machine replication which utilizes variants
of leader based protocols. Due to high total service demand,
the leaders become a bottleneck in the system. The through-
put and latency values are limited by the leader’s resources
(e.g., CPU and network bandwidth), although resources are
still available at other machines.

To overcome this shortcoming of leader-centric protocols,
we present SEQUENCER UUM and SEQUENCER UUM2,
two leader-centric protocols based on the Unicast-Unicast-M
ulticast variant. SEQUENCER UUM2 distributes the load
between all the members of the group, achieves fast recovery
from failure and improves the throughput of the network.
Also, both SEQUENCER UUM and SEQUENCER UUM2
use resources efficiently. The system will use minimum of
resources to perform a designated task. During high load, S
EQUENCER UUM2 achieves better utilization of resources
and avoids becoming a bottleneck in the system.

1. INTRODUCTION

1.1 Availability
Total ordered reliable multicast is a powerful communica-
tion primitive for structuring distributed programs in which
multiple processes must closely cooperate together. When
the availability of these processes becomes a critical feature,
one general approach is state machine replication[16]. By
replicating a service on multiple machines, a guarantee is
provided that even if one machine fails, the rest will be able
to continue to provide this service without any interruptions.
Replica coordination implies that all replicas (i.e., members
that share the same state) receive and process the sequence
of requests in the same relative order.

State machine replication utilizes variants of leader based
protocols. Typically, these protocols are also leader-centric.
This means that most of the work is done by an elected
leader from the available set of machines. Therefore the
leader becomes a bottleneck for the set. The throughput
and latency values are limited by the leader’s resources (e.g.,
CPU and network bandwidth), although resources are still
available at other machines.

1.2 Motivation
Previous research has addressed the topic of an overloaded
leader by distributing the work to a subset or all members
of the set. While this approach has proved successful, the
authors of these protocols have not considered the situation
where the system is under load and the leader can handle
the work. The experiments usually stress-test the system in
order to analyse the throughput and latency. This method
is not very efficient since in the real world the system is not
being overloaded all the time. Also, previous work does not
include an analysis of when the leader becomes a bottleneck.

As highly available systems become more widely used, re-
liable operation, scalability and improved performance will
be required. Of primary importance are issues related to
maintaining data consistency and coordinating activities of
terminals in the network. These problems become more diffi-
cult when the system is asynchronous and the fault-tolerance
and high availability requirements need to met.

Such problems are difficult to solve in a leader-centric
environment because most of the work is delegated to the
leader. Therefore the coordinator process (i.e., the leader)
creates a bottleneck in the system. In this particular case,
the system is limited by the leader’s resources (i.e., network
bandwidth and/or CPU), although there are still available
resources that can be provided by the other members of the
group.

1.3 Contributions
To overcome this shortcoming of leader-centric protocols,
we present SEQUENCER UUM and SEQUENCER UUM
2.The purpose of these protocols is to be used when the
resources are limited and there is a strong requirement for
high availability. Despite random communication delays and
failures, the protocol should maintain a replicated state of
the application and allow fast recovery from failures. SEQ
UENCER UUM is based on an approach introduced by an
algorithm that has proven successful in previous work[14,
3]. SEQUENCER UUM2 is a variant of the SEQUENCER
UUM protocol. SEQUENCER UUM2 distributes the load

between all the members of the group, achieves fast recovery
from failure and improves the throughput of the network.
Also, both SEQUENCER UUM and SEQUENCER UUM
2 use resources efficiently. The system will use minimum of
resources to perform a designated task. During high load, S
EQUENCER UUM2 achieves better utilization of resources
and avoids becoming a bottleneck in the system.

1



1.4 Roadmap
In this paper, we will present the design, implemention and
performance evaluation results of SEQUENCER UUM and
SEQUENCER UUM2. The paper is organised as follows:
Section 2 reviews related works in the area. Section 3 the
design and implementation of SEQUENCER UUM and S
EQUENCER UUM2. Section 5 presents the undertaken
experiments and the results, while section 6 discusses and
concludes the work.

2. BACKGROUND

2.1 Outline
The design and development of total order multicast prim-
itives is one of the main research topics in distributed sys-
tems. Briefly, the total order multicast problem requires a
group of distributed processes that need to reach an agree-
ment on a common order of delivery, in presence of concur-
rent multicasts by any process of the group. The problem
has inspired an abundance of literature and, over the past
three decades, more than eighty algorithms[5] have been ex-
plored. Throughout the paper, the leader of the group will
be refered to as the Coordinator. Table 1 presents the nota-
tion that will be used in this section.

M set of all valid messages
Π set of all processes (i.e., Π = {p1,. . . ,pn})

Πsequencer set of all sequencer processes
Πsender set of all sending processes
Πdest set of all destination processes

sender(m) sender of the message m
Dest(m) set of destination process for message m
seq(m) sequence number of message m
τsequencer type Sequencer

τsequencer(p) process of type Sequencer
φ token

Table 1: Notation

2.2 Mechanisms for message ordering
In the absence of roadmap to the problem of total order
multicast, Défago et al. proposed a classification of total or-
der multicast algorithms. An important assumption made
in this classification is the absence of failures. A process can
have one of the three roles in an algorithm: sender, desti-
nation, or sequencer. A sender process is a process ps that
initiates a messages (i.e., ps ε Πsender). A destination pro-
cess is a process pd to which a message is destined (i.e., pd ε
Πdest). The sequencer is the process that generates sequence
numbers which are used for message ordering. At a cer-
tain point in time, a given process may simultaneously take
several roles (e.g., sender and destination and sequencer).
The identified roles are used as basic classes for total order
multicast algorithms, depending whether the order is build
by the sender, sequencer or destination processes. Further
differences still remain between the identified classes. To
address this problem a further division was introduced lead-
ing to five subclasses: fixed sequencer, moving sequencer,
privilege-based, destination agreement and communication
history.

Privilege-based algorithms rely on senders to multicast
messages only when they are granted to do so. These al-
gorithms do not adequate provide the scalability because a
process must wait until it receives the privilege to multicast
a message. Communication history algorithms are similar
to privilege-based algorithms because the delivery order is
determined by senders. In contrast to privilege-based algo-
rithms, senders can multicast at any time. Communication
history protocols are known for having low throughput be-
cause they rely on a quadratic number of messages to be
exchanged for each message that is multicast[7]. Destina-
tion agreement algorithms ensure the delivery order from
an agreement between destination processes. A large num-
ber of hybrid protocols[13, 6, 17] combining two different
protocols have been proposed. Many of these protocols are
optimized for very large scale networks, making use of mul-
tiple groups or optimistic strategies.

2.3 Sequencer-based total algorithms
In fixed sequencer algorithms, one process is elected as a
sequencer and is responsible for coordinating the messages
from sender process to destination process. There are three
variants of these algorithms:

1. Unicast-Multicast (Figure 1(1)) consists of a unicast
to the sequencer, followed by a multicast from the se-
quencer. This variant generates few messages[12].

2. Multicast-Multicast (Figure 1(2)) consists of a multi-
cast to all destinations (including the sequencer), fol-
lowed by a second multicast from the sequencer. While
generates more messages that the Unicast-Multicas
t, this variant reduces the load on the sequencer and
makes the system easier to tolerate the crash of the
sequencer. An example of this variant is ISIS[2].

3. Unicast-Unicast-Multicast (Figure 1(3)) consists of the
request of a sequence number by the sender process
(unicast). The sequencer replies with a sequence num-
ber(unicast). Then the sender multicast the sequenced
message to the destination processes. Armstrong et
al.[14] were the first to introduce this variant in MTP.

While each of the variants exhibit linear latency with re-
spect to Π, they exhibit low throughput[7]. The coordi-
nating process becomes a bottleneck because it receives the
acknowledgements (ACKs) from Πdest (i.e., all destination
processes) and all the messages that need to be multicast
from Πsender (i.e., all sender processes). One limitation
of fixed sequencer algorithms is that the ACKs can only
be piggy-backed when all processes multicast at the same
time[5]. High throughput and lower latency can be achieved
by not requiring ACKs from Πdest.

The S-Paxos protocol implemented by Biely et al.[1], which
is based on Unicast-Unicast-Multicast variant (Figure 1(3)),
showed better throughput and latency than Unicast-Multic
ast (Figure 1(1)) implementation of Paxos protocol. Biely et
al. also noted that the systems that use algorithms based on
VariantUnicast-Unicast-Multicast are more scalable, fault-
tolerant and achieve better throughput as Π increases. How-
ever, the experiments performed by Biely et al. used clients
connected using persistent TCP connection. The Transmis-
sion Control Protocol offer an extra layer of reliability in
terms of data transmissions. While the results are promising

2



Figure 1: (1) Variant Unicast-Multicast; (2) Variant
Multicast-Multicast; (3) Variant Unicast-Unicast-Multicast

with respect of offloading the sequencer in a Fixed Sequencer
based algorithm, it is questionable whether the Unicast-Un
icast-Multicast variant achieves the same results when the
clients are connected using unreliable UDP connections.

MTP[14] is another protocol that implements the Unica
st-Unicast-Multicast variant. This protocol provides reli-
able globally ordered delivery of messages among a group of
communicating processes. MTP is built on top of IP mul-
ticasting and passes tokens to ensure the data is delivered
reliably and in order. Previous implementations of token
passing scheme have reduce the stability time and reduced
the buffer size[10]. Also, this protocol does not ensure a
leader recovery in case of failure. While the master recovery
problem has been fixed in MTP-2[3], the implementation of
the second variant still relies on a token-passing scheme.

Moving sequencer algorithms are based on the same prin-
ciple as fixed sequencer protocols. Most of the moving se-
quencer algorithms are a variation of the concept of a log-
ical ring along which a token is passed used by Chang et
al.[4]. Pinwheel eliminates timestamps used for ordering the
messages in exchange for a uniform message arrival pattern.
Kim et al.[10] remove the logical ring topology completely
and they introduce a token-passing scheme for a faster de-
tection for message stability. These algorithms tolerate mes-
sage loss by relying on a message retransmission protocol
based on acknowledgements. Token-based atomic multicast
algorithms are extremely efficient because they manage to
reduce the network contention. However, the token method
introduces an amount of overhead. Mao et al.[11] avoid the
this method and they introduce the concept of distributing
the role of the sequencer in round-robin fashion amongst the
rest of the processes. This approach is successful in offload-
ing the leader, but it suffers from poor latency. To address
this problem, Kapritsos et al.[9] assigns each consensus in-
stance to different “virtual clusters” instead of a different
leader. The drawback of this approach is that the inter clus-

ter communication makes the physical replica a bottleneck.

These algorithms are usually implemented in group com-
munication toolkits which are an effective tool for build-
ing highly available reliable systems through software repli-
cation. They provide a rich set of primitives which help
developers to implement any of the algorithms described
above. One such reliable group communication toolkit is
JGroups1[15]. This toolkit is written in Java and builds on
fundamental concepts developed in ISIS protocol[2]. The
entire toolkit can be considered an API because it can be
easily extended to be integrated with any group communi-
cation system. JGroups is based on a protocol stack. This
provides the flexibility necessary for developers to add their
own protocols by implementing the Protocol interface. The
application and the core system run in the same process. An
important advantage of JGroups is that it is heavily based
on design patterns. The developers can add new proto-
cols very easily only by implementing the Protocol interface.
This toolkit implements SEQUENCER2 which is based on
a Unicast-Multicast variant (Figure 1(1)) of the Fixed Se-
quencer class. The design of this protocol is presented in
section 2.4. This protocol will be referred to as the SE-
QUENCER protocol throughout this paper.

2.4 SEQUENCER
The SEQUENCER protocol provides total order for mul-
ticast messages by forwarding messages to the current co-
ordinator, which then sends the messages to the cluster on
behalf of the original sender. The total order is established
because it is always the same sender (whose messages are
delivered in FIFO order). Sending members add every for-
warded message M to a buffer and remove M when they re-
ceive it. Should the current coordinator crash, all buffered
messages are forwarded to the new coordinator.

3. IMPLEMENTATION
This section presents the design and implementation de-
tails of SEQUENCER UUM2 builds on SEQUENCER UU
M. Both protocols implement the Unicast-Unicast-Multicast
variant.

The SEQUENCER UUM2 builds on SEQUENCER UU
M and innovates through allocation of a range of sequence
numbers instead of a single number, whereas the SEQUEN
CER UUM must perform the request-reply cycly for each
message before multicast. When a sender makes a request
to the Coordinator, counts the number of accumulated mes-
sages in the buffer and sends this number to the Coordinator
as part of a request. When the Coordinator receives the re-
quest, it increments the local sequencer number with the
number of requests sent by the sending process and then
replies to the original sender of the message.

The SEQUENCER UUM and SEQUENCER UUM2 pro-
tocols are built on top of JGroups protocol. When the Co-
ordinator crashes, other group members will run a recon-
ciliation protocol to elect a new leader. Normally, the next
process in line will take the Coordinator role. Another dif-
ference between the two proposed protcols is the way the
view change is handled. In case of SEQUENCER UUM2,

1http://www.jgroups.org
2https://github.com/belaban/JGroups/blob/
master/doc/design/SEQUENCER.txt

3

http://www.jgroups.org
https://github.com/belaban/JGroups/blob/master/doc/design/SEQUENCER.txt
https://github.com/belaban/JGroups/blob/master/doc/design/SEQUENCER.txt


the other processes will unicast to the newly elected Coor-
dinator their highest sequence number received, whereas in
SEQUENCER UUM each of the sender needs to resend the
requests accumulated in the buffer. Both protocols improve
the availability of the system, but the SEQUENCER UUM
2 is slightly faster. For example, in a system with 2 sending
processes and a Coordinator if the Coordinator crashes, the
two processes need to send only two messages. Whereas in
case of SEQUENCER UUM, each of the senders can have n
messages accumulated in their buffer. As a conclusion, SE
QUENCER UUM2 improves the availability of the system.
Because each of the sender can request a range of sequence
numbers, this will ensure fairness among the senders. The
Coordinator can not broadcast messages directly, but it has
to execute the request-reply cycle. Also, another advantage
of the two proposed protocols compared to SEQUENCER,
the data is only sent and marshalled once (better for large
messages). This will lower the CPU usage.

As a result of this work, the SEQUENCER UUM23 has
been included in the JGroups project which is maintainted
by a consortium of developers from RedHat. The SEQUEN
CER UUM2 will appear in protocol stack of JGroups after
next major release.

4. PERFORMANCE ANALYSIS
In the Unicast-Multicast variants the component with the
highest total service demand is the Coordinator. All the
senders need to forward their messages to the Coordinator
which will TO-multicast the messages on behalf of the origi-
nal sender. Due to this procedure, the Coordinator becomes
a bottleneck. The leader becomes the key limiting factor in
achieving higher throughput. Improving this procedure will
provide the highest payoff in terms of throughput of the sys-
tem.

The focus of this section will be on analysing the response
time of the Coordinator and the improvements that can be
made to achieve better processing time and ultimately in-
crease the throughput of the system. The performance will
be measured by comparing the analytical results to perfor-
mance measurements. Table 2 introduces the notation used
in this section.

Figure 2: Black-box view of the system

The Coordinator behaves like any other queueing system
(Figure 2). To analyse the properties of this system, we will
treat the Coordinator as a FIFO M/M/1 queueing model
(Poisson arrival processes(M), exponential service time(M)
and single server(1)). This model assumes that both arrivals
and service times are exponentially distributed with a single
server. The model consists of two elements: the queue and
the server. The state of the system is defined as the total

3https://github.com/belaban/JGroups/blob/
JGRP-1821/src/org/jgroups/protocols/
SEQUENCER_UUM.java

number of elements in the system. In this case, it will be
the total number of messages in the Coordinator.

λ Mean arrival rate
µ Mean service rate
ρ Traffic intensity (Utilization)

Table 2: Notation

The utization of the Coordinator is given by:

ρ =
λ

µ
(1)

The mean number of the messages in the system is:

E[n] =
ρ

1− ρ (2)

The mean number of the messages in the queue is:

E[nq] =
ρ2

1− ρ (3)

The Stability condition results from equation 3. The traf-
fic intensity ρ must be less than 1, otherwise the number
of messages in the system becomes very large. When this
happens the Coordinator will always be busy, leading to a
queue build up. Conversely, if ρ approaches 1 then the Co-
ordinator experiences a queue build up. This directly affects
the response time of the Coordinator. The response time is:

E[r] =

1
µ

1− ρ (4)

From the equation 4 it can be deducted that ρ must be
less than 1, otherwise the response time approaches infinity.
Since the Coordinator has highest total service demand, by
measuring the response time with respect to utilization of
the system, we will be able to outline in which cases the
Coordinator becomes a bottleneck.

5. EVALUATION

5.1 Outline
This section compares the performance of SEQUENCER
UUM and SEQUENCER UUM2 to the performance of

SEQUENCER protocol, which is currently implemented in
JGroups. Two types of performance metrics are considered:
individual and global. Individual metrics aim to reflect the
utility of each machine, while global metrics reflect the sys-
temwide utility[8]. The purpose of this selection is to mea-
sure the performance of the Coordinator individually and to
be able to prove that the improvements made in the Coordi-
nator are available system-wide. In section 5.3 we measure
the ration between the response time and utilization of the
Coordinator for all three protocols. Section 5.4, 5.5 and 5.6
present the results of throughput, end-to-end delay, fairness
and CPU usage from a system perspective.

5.2 Experimental Setup
The measurements were performed on a network of ma-
chines with a Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz
processor and 4GB RAM. Machines run Linux the 2.6.32 - 1
SMP kernel and are connected using a Fast Ethernet switch.
The Java environment used is OpenJDK 1.7.0 55. The SE-
QUENCER, SEQUENCER UUM and SEQUENCER UUM2

4

https://github.com/belaban/JGroups/blob/JGRP-1821/src/org/jgroups/protocols/SEQUENCER_UUM.java
https://github.com/belaban/JGroups/blob/JGRP-1821/src/org/jgroups/protocols/SEQUENCER_UUM.java
https://github.com/belaban/JGroups/blob/JGRP-1821/src/org/jgroups/protocols/SEQUENCER_UUM.java


algorithms have been implemented in JGroups v3.4.3-Final.
The transport protocol will be UDP over IP Multicast. To
utilize the TO primitives we defined set of stack configura-
tions:

1. UDP:PING:MERGE2:FD_SOCK:FD_ALL:VERIFY_SUSPECT
:BARRIER:pbcast.NAKACK2:UNICAST3:pbcast.STABL
E:pbcast.GMS:UFC:MFC:SEQUENCER:FRAG2:pbcast.S
TATE_TRANSFER

2. UDP:PING:MERGE2:FD_SOCK:FD_ALL:VERIFY_SUSPECT
:BARRIER:pbcast.NAKACK2:UNICAST3:pbcast.STABL
E:pbcast.GMS:UFC:MFC:SEQUENCER_UUM:FRAG2:pbca
st.STATE_TRANSFER

3. UDP:PING:MERGE2:FD_SOCK:FD_ALL:VERIFY_SUSPECT
:BARRIER:pbcast.NAKACK2:UNICAST3:pbcast.STABL
E:pbcast.GMS:UFC:MFC:SEQUENCER_UUM2:FRAG2:pbc
ast.STATE_TRANSFER

The experiments presented in this section start with a warm-
up phase, followed by the measurement phase. In the warm-
up phase the experiment that will be used for measurements
is executed 5 times. During this phase no results are col-
lected. In the measurements phase the experiements will be
executed 20 times and the results logged.

5.3 Response time/Utilization
Figure 3 shows the response time as a function of the uti-
lization at the Coordinator. As the rate increases, the uti-
lization approaches 1 and the number of jobs in the system
and response time approaches infinity. In SEQUENCER,
the Coordinator reaches saturation when the response time
is 250 milliseconds and utilization is very close to 100%.
Therefore when the link utilization approaches 100%, the
response time approaches infinity and the Coordinator be-
comes a bottleneck in the system. In case of SEQUENC

Figure 3: Coordinator response time as a function of uti-
lization in SEQUENCER.

ER UUM, as the rate increases, the utilization slighly im-
proves. Figure 4 shows that as the rate increases in the sys-
tem, at 250 milliseconds the utilization is between 90% and
100%. In SEQUENCER UUM2 (Figure 5), the utilization
is capped at 90% as the rate increases. A noticeable differ-
ence between the utilization of SEQUENCER UUM2 and

the other protocols is that, SEQUENCER UUM2 reaches
this utilization rate at a much lower rate because the num-
ber of messages in the system is considerably lower than
the other two protocols. This is due to the range allocation
during a request-reply cycle compared to the work to be
undertaken in SEQUENCER UUM or SEQUENCER case.

Figure 4: Coordinator response time as a function of uti-
lization in SEQUENCER UUM.

Figure 5: Coordinator response time as a function of uti-
lization in SEQUENCER UUM2.

5.4 Throughput
To assess the throughput and the end-to-end delay of the
discussed protocols, the following experiment has been pro-
posed: for every presented protocols, n processes in the sys-
tem multicast messages. At the end of the experiment, the
throughput of the SEQUENCER protocol is chosen as a base
to compute the ratio of throughput(SEQUENCER UUM)/
throughput(SEQUENCER) and ratio of throughput(SEQU
ENCER UUM2)/throughput(SEQUENCER). The ratio is
made on the average values computed by each process. The

5



parameters of this experiment are shown in Table 3.
The results of the experiment can be observed in Figure

6. The Y axis represents the ratio of measured throughputs.
The X axis represents the number of senders in the group.
Each sender produces messages at the maximum through-
put it can sustain.

As the number of senders increases, the throughput of the
SEQUENCER degradeds slightly due to the fact that all the
senders send their messages through the Coordinator. In the
SEQUENCER UUM protocol, the throughput slightly im-
proves, considering the extra message request done by the
senders.

In case of the SEQUENCER UUM2, the throughput im-
proves as the number of senders increases because the num-
ber of requests made to the Coordinator is lower than in
SEQUENCER UUM. This is means that the senders can
request a range of sequence numbers from the coordinator
and multicast directly the accumulated messages.

Physical nodes 10
Processes 10
Senders 10
Message size 1Kb
Burst 10000 messages

Table 3: Experiment parameters used to measure the
throughput and the end-to-end of the system.

Figure 6: Ratio of system (sender) throughputs
for SEQUENCER UUM/SEQUENCER and SE-
QUENCER UUM2/SEQUENCER. Table 3 contains
the parameters used in these experiments.

Figure 7 presents the End-to-End delay for all three proto-
cols. The Y axis represents the average delay in milliseconds
when sending a message. The X axis represents the number
of senders in the group. As the number of sender increases
the delay is expected to increase as well. However, both SEQ
UENCER UUM and SEQUENCER UUM2 are faster than
SEQUENCER. For example, the average delay for seding
a message in a group with 10 senders is, compared to the
SEQUENCER, 1.25 faster in case of the SEQUENCER UU
M and 2.25 better for SEQUENCER UUM2.

Figure 7: Delay assessment of the SEQUENCER, SE-
QUENCER UUM and SEQUENCER UUM2. Table 3 con-
tains the parameters used in these experiments.

5.5 Fairness

Physical nodes 3
Processes 3
Senders 3
Message size 1Kb
Burst 10000 messages

Table 4: Experiment parameters used to assess the fairness
of Coordinator vs. other senders in the group.

Figure 8: Fairness assessment of the SEQUENCER, SE-
QUENCER UUM and SEQUENCER UUM2. Experiments
were performed with 3 processes and 3 senders. Table 4
contains the parameters used in these experiments.

From the Figure 8 we outline a set of observations. The
SEQUENCER protocol that is currently implemented in

6



JGroups is not fair. The Coordinator can directly multi-
cast the messages that it produces, whereas the processes
P2 and P3 need to send their messages to the Coordina-
tor to be multicast. This procedure induces a significant
imbalance: at the end of the measurement phase, 50% of
the messages that are delivered have been multicast by the
Coordinator. The processes P2 and P3 have each multicast
only 25% of the delivered messages.

The SEQUENCER UUM protocol improves the fairness
by introducing the request-reply cycle of a sequence num-
ber for each message before multicast. All processes in the
group, including the Coordinator, must perform this proce-
dure before broadcasting a message. While the request-reply
improves the fairness, the senders P2 and P3 must request
a sequence number from Coordinator for each message they
need to multicast. At the end of the measurement phase,
40% of the delivered message delivered have been multicast
by the Coordinator.

SEQUENCER UUM2 ensures fairness between all the pro-
cesses in the group. The results show that all the processes
have equally multicast about the same number of message.
This is due to the fairness mechanism described in Section
3 where each of the senders requests a range of sequence
numbers based on the number of accumulated messages in
the buffer of the sender.

5.6 CPU Usage
The last performance metric to evaluate is the CPU Us-
age of JGroups process using, by turn, the SEQUENCER,
SEQUENCER UUM and SEQUENCER UUM2 protocols.
During the experiment, the CPU Usage of the JGroups pro-
cess was logged every 0.1 seconds. The collected data was
added up and averaged. This procedure has been performed
for two parties: Coordinator and the other processes. The
setup parameters are presented in the Table 5.

Physical nodes 5
Processes 5
Senders 5
Message size 100Kb
Burst 10000 messages

Table 5: Experiment parameters used during the CPU Us-
age measurements.

The experiment in Figure 9 plots the CPU usage measured
in a system with 5 processes, each on a separate physical
node. The X axis represents the protocols used in each case.
The Y axis represents the CPU consumption (in %).
From the Figure 9 the first remark made is that among the
three protocols, the SEQUENCER variant induces the high-
est CPU consumption. In case of the SEQUENCER, the
Coordinator used nearly twice the CPU usage compared
with the other sending processes in all the performed ex-
periements. This is due to the multicast of all messages for-
warded by the other senders. Another relevant factor that
contributes to high CPU usage by the senders is the mar-
shalling of messages. When an application wants to pass its
memory objects across a network to another host or persist it
to storage, the in-memory representation must be converted
to a suitable format. This process is called marshalling and
the revert operation is called demarshalling. The Coordi-
nator encapsulates a forward message in its own message

Figure 9: CPU usage during high load n-to-n multi-
cast of the SEQUENCER, SEQUENCER UUM and SE-
QUENCER UUM2 protocols. Table 5 contains the param-
eters used during the experiments.

before multicast.
In the SEQUENCER UUM case, the CPU usage of the

Coordinator is reduced to an average of 8.52% while the rest
of the senders average to 9%. The improvement is because
the Coordinator does not multicast the messages received
from the senders. Now, each sender utilizes the request-
reply cycle before broadcasting its messages.

The SEQUENCER UUM2 reduces the CPU usage even
further. In this environment, the Coordinator utilizes 5.8%
and the senders use 6.7% of the CPU time. This is reduction
in CPU usage is due to the elimination of the request-reply
cycle for each message that the sender need to broadcast.
Having less requests and replies made to the Coordinator,
the CPU usage is reduced on all the nodes in the group.

6. DISCUSSION
In this paper, we have examined an approach for providing
scalable group communication for systems that need high
availability by using reliable, scalable multicast communica-
tion. When the availability of these systems becomes a criti-
cal feature, one general approach is state machine replication
which utilizes variants of leader based protocols. Typically,
these protocols are also leader-centric. Since the leader is
the resource with the highest utilization, it becomes a bot-
tleneck for the set. The throughput and latency values are
limited by the leader’s resources (e.g., CPU and network
bandwidth), although resources are still available at other
machines. Performance optimizations at this resource offer
the highest payoff.

To overcome this shortcoming, we implemented two leader-
centric protocols: SEQUENCER UUM and SEQUENCER
UUM2. Both are based on the Unicast-Unicast-Multicas

t variant. When TO-multicast a set of messages, the SE-
QUENCER UMM performs the request-reply cycle for each
message m in the set. The SEQUENCER UUM2 optimizes
this process and requests a range of sequence numbers from
the Coordinator. We compared these two protocols with the
SEQUENCER protocol. SEQUENCER implements a Unic

7



ast-Multicast variant and is currently the only TO primitive
in the JGroups stack.

The purpose of the comparison was to measure utilization
of the Coordinator and conclude when the leader becomes a
bottleneck in the system. Thus this was the most important
part of performance evaluation. Using perfomance analy-
sis we modeled the Coordinator as queueing system using
a M/M/1 queue. Using measurements we confirm the re-
sults of the analysis. The utilization of the SEQUENCER
approaches 100% and it becomes a bottleneck in the system.

SEQUENCER UUM2 distributes the load between all the
members of the group, achieves fast recovery from failure
and improves the throughput of the network. Also, both SE
QUENCER UUM and SEQUENCER UUM2 use resources
efficiently. The system utilizes minimum of resources to per-
form a designated task. During high load, SEQUENCER
UUM2 will achieve a better utilization of resources and will
avoid becoming a bottleneck in the system.

7. FUTURE WORK
The research undertaken as part of this study has raised
several interesting points that should be considered as fu-
ture work. Here, we address these points, discussing why
undertaking them would be beneficial and, were is the case,
provide some key challenges that one would need to oversee.

Future work should include reproducing the tests used
in this paper on a cluster larger than 10 (physical) nodes.
It is important to observe the scalability of SEQUENCE
R UUM2 on a larger scale. Another interesting research
challenge is to evaluate how the variants Unicast-Multicast
and Unicast-Unicast-Multicast with multiple coordinators
change the performance of the system. This implies using a
moving sequencer, where each coordinator is running each
of Fixed Sequecer variants. When the Coordinator reaches
a certain utilization limit, creates another Coordinator to
reply to the new incoming requests made by the sending
processes in the group. The initial coordinator will only
TO-multicast messages left in the queue. This approach
generates a number of challenges: notify the sender to stop
unicasting messages to the old Coordinator ; notify all the
processes in the view about the new coordinator and trans-
fer the sequence number from old Coordinator to the new
Coordinator.

8. REFERENCES
[1] M. Biely, Z. Milosevic, N. Santos, and A. Schiper.

S-paxos: Offloading the leader for high throughput
state machine replication. In Reliable Distributed
Systems (SRDS), 2012 IEEE 31st Symposium on,
pages 111–120, 2012.

[2] K. Birman, A. Schiper, and P. Stephenson.
Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272–314, Aug. 1991.

[3] C. Bormann, J. Ott, H.-C. Gehrcke, T. Kerschat,
N. Seifert, and N. Seifert. Mtp-2: Towards achieving
the s.e.r.o. properties for multicast transport. In In
International Conference on Computer
Communications Networks, 1994.

[4] J.-M. Chang and N. F. Maxemchuk. Reliable
broadcast protocols. ACM Trans. Comput. Syst.,
2(3):251–273, Aug. 1984.

[5] X. Défago, A. Schiper, and P. Urbán. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Comput. Surv., 36(4):372–421, Dec.
2004.

[6] P. Ezhilchelvan, R. Macedo, and S. Shrivastava.
Newtop: a fault-tolerant group communication
protocol. In Distributed Computing Systems, 1995.,
Proceedings of the 15th International Conference on,
pages 296–306, 1995.

[7] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma.
Throughput optimal total order broadcast for cluster
environments. ACM Trans. Comput. Syst.,
28(2):5:1–5:32, July 2010.

[8] R. Jain. The art of computer system performance
analysis: techniques for experimental design,
measurement, simulation and modeling. New York:
John Willey, 1991.

[9] M. Kapritsos and F. P. Junqueira. Scalable agreement:
Toward ordering as a service. In Proceedings of the
Sixth International Conference on Hot Topics in
System Dependability, HotDep’10, pages 1–8, Berkeley,
CA, USA, 2010. USENIX Association.

[10] J. Kim and C. Kim. A total ordering protocol using a
dynamic token-passing scheme. Distributed Systems
Engineering, 4(2):87, 1997.

[11] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for wans.
In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’08, pages 369–384, Berkeley, CA, USA, 2008.
USENIX Association.

[12] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable
group communication in distributed systems. In
Distributed Computing Systems, 1988., 8th
International Conference on, pages 439–446, 1988.

[13] L. Rodrigues, H. Fonseca, and P. Verissimo. Totally
ordered multicast in large-scale systems. In Distributed
Computing Systems, 1996., Proceedings of the 16th
International Conference on, pages 503–510, 1996.

[14] K. M. S. Armstrong, A. Freier. Multicast transport
protocol. RFC 1301 IETF, 1992.

[15] L. Sales, H. Teofilo, J. D’Orleans, N. Mendonca,
R. Barbosa, and F. Trinta. Performance impact
analysis of two generic group communication apis. In
Computer Software and Applications Conference,
2009. COMPSAC ’09. 33rd Annual IEEE
International, volume 2, pages 148–153, 2009.

[16] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, Dec. 1990.

[17] P. Vicente and L. Rodrigues. An indulgent uniform
total order algorithm with optimistic delivery. In
Reliable Distributed Systems, 2002. Proceedings. 21st
IEEE Symposium on, pages 92–101, 2002.

8


	Introduction
	Availability
	Motivation
	Contributions
	Roadmap

	Background
	Outline
	Mechanisms for message ordering
	Sequencer-based total algorithms
	SEQUENCER

	Implementation
	Performance Analysis
	Evaluation
	Outline
	Experimental Setup
	Response time/Utilization
	Throughput
	Fairness
	CPU Usage

	Discussion
	Future Work
	References

